
8086 Microprocessor Cheatsheet

Jishan Shaikh∗

jishanshaikh9893@gmail.com

November 7, 2018

Abstract: This cheatsheet contains information about 8086 microprocessor. Concise
and to the point descriptions are provided for better readability. The content of this cheat-
sheet is result of scribed notes taken from various resources available publicly. 8086 topics
included in the document are 8086 overview, internal architecture, register organization,
modes of operation, addressing modes, interrupts, memory, and assembly language pro-
grams (Instruction types, Memory segmentation, and Memory models). Program bank
and Question bank has an awesome collection of assembly language program questions
commonly asked during examinations/quizzes. This cheatsheet is primarily published as
open document at www.github.com/jishanshaikh4/8086-cheatsheet/. Feel free to give up
your suggestions there.

1 8086 Overview

8086 is a 16-bit microprocessor. It has 20 bit address bus that can access upto 220 memory locations
(1 MB). It can support upto 64K input/output ports. It provides 14, 16-bit internal registers. It has
multiplexed address and data bus AD0 − AD15 and A16 − A19. It requires single phase clock with
33% duty cycle to provide internal cycle. 8086 is designed to operate in two modes- Minimum and
Maximum mode. Its improvements over 8085 microprocessor includes pipelining, instruction queue,
and segmentation. It can pre-fetch upto 6 instruction byte from memory and queue them in order
to speed up instruction execution (Pipelining). It usually requires +5V power supply. It is packaged
under a 40 pin dual inlined package.

2 Internal Architecture

8086 has two blocks BIU (Bus Interface Unit) and EU (Execution Unit). The BIU performs all bus
operations such as instruction fetching, reading, and writing operands for memory and calculating
the address of memory operands. The instruction bytes are transferred to the instruction queue. EU
executes instructions from the instruction system byte queue. Both units operate asynchronously to
give the 8086 an overlapping instruction fetch and execution mechanism which is called as Pipelin-
ing. This result in efficient use of system bus and system performance. BIU contains Instruction
queue, Segment registers, Instruction pointer, and Address adder. EU contains Control circuitry,
Instruction decoder, ALU, Pointer and Index register, and Flag register.

∗These notes are collected and compiled by Jishan Shaikh. No copyright owns by Jishan Shaikh regarding information
provided here, you are free to use these notes in your academics and other non-commercial purposes.

1

mailto:jishanshaikh9893@gmail.com
https://www.github.com/jishanshaikh4/8086-cheatsheet/


Figure 1: 8086 Architecture diagram.

Bus Interface Unit (BIU): It provides a full 16-bit bidirectional data bus and 20-bit address
bus, and is fully responsible for performing all external bus operations. The functions of BIU includes
instruction fetch, instruction queuing, operand fetch, storage, address relocation, and bus control.
It uses a mechanism known as instruction stream queue to implement a pipiline architecture. This
queue permits prefetch of upto 6 bytes of instruction code. Prefetching instructions are held in its
FIFO queue.

Since the data bus is of 16-bit size, BIU can fetch two instruction bytes in a single memory cy-
cle. The time interval of which there doesn’t any bus activity is known as Idle state, which may
occur between bus cycles. The BIU also contains a dedicated adder which is used to generate 20-bit
physical address that is output of address bus. It is formed by adding an appended 16-bit segment
address and a 16-bit offset address. BIU is also responsible for generation of bus control signals such
as those of memory read or write and I/O read or write.

Execution Unit (EU): It is responsible for decoding and executing all instructions. The EU

2



Figure 2: 8086 Internal bus configuration.

extracts instructions from top of the queue in the BIU, decodes them, generate operands if necessary,
passes them to the BIU and requests it to perform the read or write bus cycles to memory or I/O
and perform the operation specified by the instruction on the operands. During the execution of
the instruction, the EU tests the status and control flags and updates them based on the results
of executing the instruction. If queue is empty, EU has to wait for the next instruction byte to be
fetched and shifted to top of the queue. When EU executes a branch or jump instruction, it transfers
control to a location corresponding to another set of sequential instructions. Whenever this happens,
the BIU automatically resets the queue and then begins to fetch instructions from this new location
to refill the queue.

3 Register organization

The 8086 has four groups of user accessible internal registers. They are instruction pointer, four data
registers, four pointer and index register, and four segment registers. 8086 has a total of 14, 16-bit
registers including a 16-bit register called status register, with 9-bits implemented for status and
control flags. Most of the registers contain data/instruction offsets within 64KB memory segment.
There are four different 64KB segments for instructions, stack, data, and extra data. To specify
where in 1MB of processor memory these 4 segments are located the processor uses four segment
registers:

Code Segment (CS): It is a 16-bit register containing address of 64-bit segment with processor
instructions. The processor uses CS segment for all accesses to instructions referenced by instruc-
tion pointer (IP) register. CS register cannot be changed directly. The CS register is automatically
updated during far jump, far call and far return instructions.

Stack Segment (SS): It is a 16-bit register containing address of 64KB segment with program
stack. By default, the processor assumes that all data referenced by the stack pointer (SP) and base

3



Figure 3: 8086 Pin configuration.

pointer (BP) registers is located in the stack segment. SS register can be changed directly using
POP instruction.

Data Segment (DS): It is a 16-bit register containing address of 64KB segment with program
data. By default, the processor assumes that all data referenced by general registers (AX, BX, CX,
DX) and index register (SI, DI) is located in the data segment. DS register can be changed directly
using POP and LDS instructions.

Extra Segment (ES): It is a 16-bit register containing address of 64KB segment, usually with
program data. By default, the processor assumes that the DI register references the ES segment in
string manipulation instructions. ES register can be changed directly using POP and LES instruc-
tions.

It is possible to change default segments used by general and index registers by prefixing instruc-
tions with a CS, SS, DS or ES prefix. All general registers of the 8086 microprocessor can be used
for arithmetic and logic operations. The general registers are:

Accumulator: register consists of two 8-bit registers AL and AH, which can be combined together
and used as a 16- bit register AX. AL in this case contains the low-order byte of the word, and AH
contains the high-order byte. Accumulator can be used for I/O operations and string manipulation.

Base: register consists of two 8-bit registers BL and BH, which can be combined together and
used as a 16-bit register BX. BL in this case contains the low-order byte of the word, and BH contains
the high-order byte. BX register usually contains a data pointer used for based, based indexed or
register indirect addressing.

4



Count: register consists of two 8-bit registers CL and CH, which can be combined together and
used as a 16-bit register CX. When combined, CL register contains the low-order byte of the word,
and CH contains the high- order byte. Count register can be used in Loop, shift/rotate instructions
and as a counter in string manipulation,.

Data: register consists of two 8-bit registers DL and DH, which can be combined together and
used as a 16-bit register DX. When combined, DL register contains the low-order byte of the word,
and DH contains the high- order byte. Data register can be used as a port number in I/O opera-
tions. In integer 32-bit multiply and divide instruction the DX register contains high-order word of
the initial or resulting number.

The following registers are both general and index registers:

Stack Pointer (SP): It is a 16-bit register pointing to program stack.

Base Pointer (BP): It is a 16-bit register pointing to data in stack segment. BP register is
usually used for based, based indexed, or register indirect addressing.

Source Index (SI): It is a 16-bit register used for indexed, based indexed, and register indirect
addressing, as well as a source data address in string manipulation instructions.

Destination Index (DI): It is a 16-bit register used for indexed, based indexed, and register
indirect addressing, as well as a destination data addressing in string manipulation instructions.

Other registers includes Instruction Pointer (IP) and Flag register both of which are of 16-bit
size. Only 9-bits of Flag register are used for setting flag bits (Other bits are don’t care bits and
useless in context), and are as follows:

Figure 4: 8086 Flag register.

Overflow Flag (OF): Set if the result is too large positive number, or is too small negative
number to fit into destination operand.

Destination Flag (DF): If set then string manipulation instructions will auto-decrement index
registers. If cleared then the index registers will be auto-incremented.

5



Interrupt-enable Flag (IF): Setting this bit enables maskable interrupts.

Single-step Flag (TF): If set then single-step interrupt will occur after the next instruction.

Sign Flag (SF): Set if the most significant bit of the result is set.

Zero Flag (ZF): Set if the result is zero (not set).

Auxiliary carry Flag (AF): Set if there was a carry from or borrow to bits 0-3 in the AL register.

Parity Flag (PF): Set if the parity (the number of 1s) in the lower order byte of result is even.

Carry Flag (CF): Set if there was a carry from or borrow to the most significant bit during last
result calculation.

4 Modes of operation: Minimum and Maximum mode

Minimum mode: The minimum mode is selected by applying logic 1 to the MN/MX# input
pin. This is single microprocessor configuration. See figures 5, 6 of Memory read and write timing
diagrams of 8086 in minimum mode.

Figure 5: 8086 Memory read timing diagram in minimum mode.

Maximum mode: The maximum mode is selected by applying logic 0 to the MN/MX# input
pin. This is a multi microprocessors configuration. See figures 7, 8 of Memory read and write timing
diagrams of 8086 in maximum mode.

5 Addressing Modes

The addressing modes supported by 8086 are-

Implied: The data value/data address is implicitly associated with the instruction.

6



Figure 6: 8086 Memory write timing diagram in minimum mode.

Register: References the data in a register or in a register pair.

Immediate: The data is provided in the instruction.

Direct: The instruction operand satisfies the memory address where data is located (Memory
direct).

Register Indirect: The instruction specifies a register containing an address, where data is lo-
cated. This addressing mode works with SI, DI, BX, and BP registers.

Based: 8-bit or 16-bit instruction operand is added to the contents of a base register (BX or BP),
the resulting value is a pointer to location where data resides.

Indexed: 8-bit or 16-bit instruction operand is added to the contents of an index register (SI or
DI), the resulting value is a pointer to location where data resides.

Based Indexed: The contents of a base register (BX or BP) is added to the contents of an index
register (SI or DI), the resulting value is a pointer to location where data resides.

Based Indexed with displacement: 8-bit or 16-bit instruction operand is added to the con-
tents of a base register (BX or BP) and index register (SI or DI), the resulting value is a pointer to
location where data resides.

6 Interrupts

Execution sequence for handling an interrupt: When an interrupt occurs, the processor stores
FLAGS register into stack, disables further interrupts, fetches from the bus one byte representing
interrupt type, and jumps to interrupt processing routine address of which is stored in location 4 *
interrupt type address. Interrupt processing routine should return with the IRET instruction.

7



Figure 7: 8086 Memory read timing diagram in maximum mode.

8086 has following interrupts-

INTR: It is a maskable hardware interrupt. The interrupt can be enabled/disabled using STI/CLI
instructions or using more complicated method of updating the FLAGS register with the help of the
POPF instruction.

NMI: It is a non-maskable interrupt. Interrupt is processed in the same way as the INTR inter-
rupt. Interrupt type of the NMI is 2, i.e. the address of the NMI processing routine is stored in
location 0008h. This interrupt has higher priority then the maskable interrupt.

Software Interrupts: can be caused by:

INT instruction: breakpoint interrupt. This is a type-3 interrupt.

INT interrupt number instruction: Any one of interrupt from available 256 interrupts.

INTO instruction: Interrupt on overflow.

Single step interrupt: generated if the TF flag is set. This is a type 1 interrupt. When the
CPU processes this interrupt it clears TF flag before calling the interrupt processing routine.

There exists some processor exceptions such as divide error (Type 0), Unused opcode (Type 6),
and Escape opcode (Type 7). The processing of software interrupts is same as that of hardware
interrupts.

8



Figure 8: 8086 Memory write timing diagram in maximum mode.

7 Memory

Program, data, and stack memories occupy the same memory space. As the most of the processor
instructions use 16-bit pointers the processor can effectively address only 64 KB of memory. To
access memory outside of 64 KB the CPU uses special segment registers to specify where the code,
stack and data 64 KB segments are positioned within 1 MB of memory. 16-bit pointers and data
are stored as: address: low-order byte, address+1: high-order byte. 32-bit addresses are stored in
”segment: offset” format as: address: low-order byte of segment, address+1: high-order byte of
segment, address+2: low-order byte of offset, and address+3: high-order byte of offset. Physical
memory address pointed by segment: offset pair is calculated as:

Physical address = (segment address ∗ 16) + offset address

Program memory: Program can be located anywhere in memory. Jump and call instructions
can be used for short jumps within currently selected 64 KB code segment, as well as for far jumps
anywhere within 1 MB of memory. All conditional jump instructions can be used to jump within
approximately +127 to -127 bytes from current instruction.

Data memory: The processor can access data in any one out of 4 available segments, which
limits the size of accessible memory to 256 KB (if all four segments point to different 64 KB blocks).
Accessing data from the Data, Code, Stack or Extra segments can be usually done by prefixing in-

9



structions with the DS:, CS:, SS: or ES: (some registers and instructions by default may use the ES or
SS segments instead of DS segment). Word data can be located at odd or even byte boundaries. The
processor uses two memory accesses to read 16-bit word located at odd byte boundaries. Reading
word data from even byte boundaries requires only one memory access.

Stack memory: It can be placed anywhere in memory. The stack can be located at odd memory
addresses, but it is not recommended for performance reasons.

0000h-02FFh are reserved memory locations for interrupt vectors. Each interrupt vector is a 32-bit
pointer in format segement:offset. FFFF0h-FFFFFh - after reset the processor always starts program
execution at the FFFF0h address.

8 8086 Assembly Programming

8.1 8086 Instruction types (set)

Data flow Instructions: Transfer information between registers and memory locations or I/O
ports. e.g. MOV, XCHG, LEA, PUSH, POP, PUSHF, POPF, IN, OUT.

Figure 9: PUSH and POP instructions.

Arithmetic Instructions: Perform arithmetic operations on binary or binary-coded-decimal
(BCD) numbers. e.g. ADD, SUB, INC, DEC, ADC, SBB, NEG, CMP, MUL, IMUL, DIV, IDIV,
CBW, CWD.

Bit manipulation Instructions: Perform shift, rotate, and logical operations on memory loca-
tions and registers. e.g. SHL, SHR, SAR, ROL, ROR, RCL, RCR, NOT, AND, OR, XOR, TEST.

10



Figure 10: PUSHF and POPF instructions.

Control transfer (flow) Instructions: Control sequence of program execution; include jumps
and procedure transfers. e.g. JMP, JG, JL, JE, JNE, JGE, JLE, JNG, JNL, JC, JS, JA, JB, JAE,
JBE, JNB, JNA, JO, JZ, JNZ, JP, JCXZ, LOOP, LOOPE, LOOPZ, LOOPNE, LOOPNZ, CALL,
RET.

String Instructions: Move, compare, and scan strings of information. e.g. MOVS, MOVSB,
MOVSW, CMPS, CMPSB, CMPSW, SCAS, SCASB, SCASW, LODS, LODSB, LODSW, STOS,
STOSB, STOSW.

Interrupt Instructions: Interrupt processor to service specific condition. e.g. INT, INTO,
IRET.

Processor Control Instructions: Set and clear status flags, and change the processor execution
state. e.g. STC, STD, STI.

Miscellaneous Instructions: e.g. NOP, WAIT.

8.2 Memory Segmentation

A memory segment is a block of 216 (64K) bytes. Each segment is identified by a segment number.
Segment number is of 16-bits (0000-FFFF). A memory location is specified by an offset within a
segment. Logical address to physical address is discussed in memory section.

Program segments: Program’s code, data, and stack are loaded into different memory segments,
namely code segment, data segment, and stack segment. At any time, only four memory segments
are active. Program segment need not occupy entire 64K byte. Data segment contains variable
declarations and is declared by .DATA. Stack segment is used to store the stack, and is declared by
.STACK size. Default size of stack is 1KB. Code segment contains program’s instructions, and is
declared by .CODE.

Memory Models: Following are memory models in 8086:

SMALL: Code in one segment, and data in one segment.

MEDIUM: Code in more than one segment, and data in one segment.

COMPACT: Code in one segment, and data in more than one segment.

LARGE: Code in more than one segment, and data in more than one segment, and no array larger
than 64KB.

11



HUGE: Code in more than one segment, and data in more than one segment, and arrays may be
larger than 64KB.

9 Most asked Assembly Language Programs (ALPs)

Roughly ordered in increasing order of difficulty. One program may asks for writing more than one
assembly programs.

1. Write assembly language programs (ALPs) for addition and subtraction of n numbers (16 bits
and 32 bits).

2. Write assembly language programs (ALPs) for multiplication and division of n numbers (16
bits and 32 bits).

3. Write assembly language programs (ALPs) to determine GCD (HCF) and LCM of two numbers
(16-bits and 32 bits).

4. Write an assembly language program (ALP) to evaluate expressions.

5. Write assembly language programs (ALPs) for sorting and searching (Finding maximum and
minimum numbers among n numbers).

6. Write assembly language programs (ALP) to perform Shift and rotate operations.

7. Write an assembly language program (ALP) to check whether given data is positive or negative
using bit manipulation instructions.

8. Write an assembly language program (ALP) to count number of 0s and 1s in a given data.

9. Write an assembly language program (ALP) to check bit wise and nibble wise palindrome.

10. Write an assembly language program (ALP) for converting packed BCD to unpacked BCD.

11. Write an assembly language program (ALP) for BCD to ASCII conversion (Using arithmetic
and logical instructions).

12. Write an assembly language program (ALP) for moving a block of data from one memory
location to another.

13. Write an assembly language program (ALP) for reversing a string.

14. Write an assembly language program (ALP) for comparison of two strings.

15. Write an assembly language program (ALP) to find length of a string using string instructions.

16. Write an assembly language program (ALP) to change an already available ascending order
byte string to descending order.

17. Write an assembly language program (ALP) to convert a given sixteen bit binary number to
its GRAY equivalent.

18. Write an assembly language program (ALP) to find out transpose of a 3x3 matrix.

19. Write an assembly language program (ALP) to find nth Fibonacci number.

20. Write an assembly language (ALP) program for separation of odd and even numbers.

21. Write an assembly language program (ALP) to find out cube (or square) of an 8-bit hexadecimal
number.

22. Write an assembly language program (ALP) for traffic light controller.

12



10 Question Bank

1. What is Pipelining and Segmentation? What were the drawbacks of 8085 that were overcomed
by pipelining and segmentation. What is use of memory segmentation in 8086?

2. Which pins determine the mode of operation of 8086? What are the pins that specifies various
types of transfer in minimum and maximum mode?

3. What are the types of transfer of 8086? What is the use of Bus controller?

4. Explain in brief following terms: Bus, Memory module, I/O subsystem, Interface, Memory
Interface, I/O Interface.

5. Explain the internal architecture of 8086 with diagram.

6. Describe the functions of EU and BIU.

7. Explain register organization of 8086. What the function of various registers and pointers in
8086?

8. Describe Flag register with its functions in 8086

9. How 20-bit address is generated in 8086?

10. Explain timing diagrams of memory read and memory write machine cycles in 8086.

11. Explain minimum and maximum mode of 8086? Which mode is used for multiprocessor con-
figuration?

12. What are various flags of 8086?

13. What are operators and operands?

14. Enlist various instructions of 8086?

15. Describe following instructions: Data transfer instructions, Arithmetic instructions, Bit ma-
nipulation instructions, Program control instructions, Processor control instructions, string
instructions.

16. What are addressing modes? Explain various addressing modes in 8086?

17. What are Procedures and MACROS? Write functions of them.

18. What are the differences between procedures and MACROS? What is the fundamental differ-
ence between a MACRO and a subroutine? Enlist various advantages and disadvantages of
Macros.

19. Explain various machine language instruction formats supported by 8086.

20. What is Assembler and linker? What are differences between them?

21. What are interrupts? Describe functions of an interrupt vector table. How many interrupts
are there in 8085. Explain their maskability property and priority order between them.

22. What are the procedures when interrupt happens in 8086.

23. How are stack pointer and stack segment registers initialized when pushing first element on to
a stack?

24. Describe interrupts. Classify vectored and non-vectored interrupts in 8086. Write a simple
routine to demonstrate software interrupt procedure.

13



Figure 11: Jump instructions.

14



Figure 12: Loop instructions.

Figure 13: String handling instructions.

Figure 14: Repeat string instructions.

15



Figure 15: Flag (Processor) control instructions.

Figure 16: 8086 General instruction queue operation flow chart.

16


	8086 Overview
	Internal Architecture
	Register organization
	Modes of operation: Minimum and Maximum mode
	Addressing Modes
	Interrupts
	Memory
	8086 Assembly Programming
	8086 Instruction types (set)
	Memory Segmentation

	Most asked Assembly Language Programs (ALPs)
	Question Bank

